Altering Seawater Chemistry to Mitigate CO₂ and Ocean Acidification

Greg H. Rau

Institute of Marine Sciences, University of California, Santa Cruz, and Carbon Management Program, Lawrence Livermore National Laboratory rau4@llnl.gov

Thanks to: Ken Caldeira Bob Thronson Julio Friedmann CEC's EISG Program

Summary:

- □ Direct mitigation of fossil energy CO₂ (e.g. sequestration) is essential for stabilizing atmospheric CO₂.
- □ In addition to climate effects, anthropogenic CO₂ impacts ocean chemistry.
- ☐ Ocean-based CO₂ mitigation must be considered:
 - Land-based efforts may prove inadequate.
 - >The ocean has a large CO₂ capture/storage potential.
 - Various potentially safe, marine-based options have been proposed and need to be evaluated.
- □ The preceding realities and possibilities need to be incorporated into CO₂ mitigation policy, decision-making, and R&D funding.

Efforts to reverse CO₂ emissions have thus far failed: Emissions for 2000-2007 well above worst case scenarios

Renewable energy is losing ground to fossil energy:

Units: GW

Energy Source: World 2001 World 2006 % Change

Fossil 10883 12724 16.9

Non-Fossil 1628 1849 13.6

[Fossil sources **increased** as % of total: 87.0 -> 87.3%]

Source: BP Statistical Review of World Energy 2007

Forecast: Continued increases in CO₂ emissions

International Energy Agency projected energy use and sources to 2030 -

Forecast: Continued increase in atmospheric CO₂

Increasing fossil energy use without mitigation guarantees increasing atmospheric CO₂

Conclusion:

- □ Despite significant gains in low/no-carbon energy generation, these have been and will likely continue to be woefully inadequate for mitigating CO₂ emissions from energy production.
- □ Therefore, direct or indirect CO₂ mitigation of fossil energy is urgently needed for atmospheric CO₂ stabilization.
- Mitigation strategies must be applicable to developing countries, the primary source of future CO₂ emissions.

Why mitigate CO₂: It's not just about climate change -CO₂ emissions impact ocean chemistry

$$CO_2 + H_2O < \longrightarrow H_2CO_3 < \longrightarrow H^+ + HCO_3^- < \longrightarrow 2 H^+ + CO_3^{2-}$$

(% of initial CO_2): (+ 9 %) (+151 %) (- 60%)

Therefore unlike climate effects, ocean acidification is guaranteed under BAU emissions scenarios

Why mitigate CO₂: It's not just about climate change - CO₂ emissions impact ocean chemistry

$$CO_2 + H_2O < \longrightarrow H_2CO_3 < \longrightarrow H^+ + HCO_3^- < \longrightarrow 2 H^+ + CO_3^{2-}$$

(% of initial CO_2): (+ 9 %) (+151 %) (- 60%)

CO₂ emissions will alter ocean pH (0.2 units) to the point where it will violate U.S. Environmental Protection Agency Quality Criteria [1976] by mid-century if emissions are not dramatically curtailed. (e.g., see Zeebe et al., Science, 321:51-2)

(Caldeira and Wickett, 2003, Nature 425:365)

CO₂ affects many calcifying species

The consequences of increasing ocean acidity

- Significant impacts observed on calcifying organisms such as corals and shellfish
- Significant potential for impacts on marine ecosystems and biogeochemistry that are essential to a habitable planet, i.e. food and O₂ production, carbon and nitrogen cycling, etc.

O. Hoegh-Guldberg, et al., Science, December 2007

Action items needed on ocean acidity

- □ Determine full scope of biogeochemical and habitability impacts from ocean acidification.
- □Incorporate these impacts into the cost/benefit equations for CO₂ mitigation.
- Incorporate preceding into policy and action plans at state (e.g., ARB, CEC), national (e.g. Congress, DOE, EPA), and international (e.g. UN, World Bank, G-8) levels.

The ocean as part of the CO₂ solution

Rationale:

- Largest potential for CO₂ absorption and storage on earth:
 - > 7 GT CO₂/yr absorbed by the ocean
 - 1/3-1/2 of all anthropogenic CO₂ emissions have thus far been absorbed by the ocean
- Land-based CO₂ mitigation efforts alone may prove ineffective in reversing CO₂ emissions
- Various methods of ocean CO₂ mitigation exist or have been proposed, for example ---->

Ocean CO₂ Sequestration Options

- Physical: Deep ocean CO₂ injection (Marchetti, '77) issues Cost of CO₂ capture and transport; Bio effects
- Biological: Ocean fertilization (Martin, '90) issues Bio and eco effects; Mitigation effectiveness?
- Chemical:
 - > Alkalinity addition (Kheshgi '95; House et al. '07; Harvey '08)
 - Enhanced limestone weathering (Rau et al. '99-'07)
- Other? E.g., crop waste stored in marine anoxic zones (Metzger and Benford, 2001)

Nature's own CO₂ capture and storage

Nature will sequester all anthropogenic CO₂

but over tens of thousands of years and with significant climate and environmental impacts

Why not speed up carbonate weathering?

Where cost effective to do so, place limestone and water in direct contact with CO₂-rich waste gas:

$$CO_2 + H_2O + CaCO_3 ---> Ca^{2+} + 2HCO_3^{-1}$$

Advantages:

- Low-tech and retrofitable to existing power plants, including those in developing countries
- □ Already widely used for SO₂ mitigation
- Can have low parasitic energy loss
- Can be low cost
- Safe, benign end product; Counters effects of ocean acidity

McDermott's limestone CO₂ scrubber concept

William Downs and Hamid Sarv. 2002. CO₂CAPTURE AND SEQUESTRATION BY A LIMESTONE LAGOON SCRUBBER. McDermott Technology, Inc., Alliance, OH. 2nd Ohio CO₂ Reduction, Capture & Sequestration Forum, Ohio University, April 26 2002

Required land for fixation of CO₂ from a 500 MW coal-fired plant

McDermott's comparison of CO₂ control methods

Power System	CO ₂ Removal			
	Method	% Efficiency	%	\$/ton
		Loss	Removal	Avoided
Conventional PC w/o FGD	None	Base	0	
Conventional PC w/ FGD	None	1.4	0	
Conventional PC w/ FGD	Amine scrubbing	40	90	73
O ₂ fired PC w/ recycled flue gas	Condensing CO ₂ -rich exhaust	34	90	60
Conventional PC with limestone lagoon	Wet scrubbing with limestone	2	90	21

William Downs and Hamid Sarv. 2002. CO₂CAPTURE AND SEQUESTRATION BY A LIMESTONE LAGOON SCRUBBER. McDermott Technology, Inc., Alliance, OH. 2nd Ohio CO₂ Reduction, Capture & Sequestration Forum, Ohio University, April 26 2002

Optimum AWL economics

Estimated cost per tonne CO₂ sequestered, assuming coastal location:

Limestone -

```
2.3 tonnes @ $4/tonne = $ 9.20 use free, nearby
crushing from 10 cm to 1cm = $ 1.45 waste limestone
transport 100 km by rail = $ 8.00
```

- Water -
- ◆ 10⁴ m³, pumped 2 vertical meters = \$\frac{\\$7.57}{}\$ use cooling water
- Capital and maintenance = \$ 2.50

\$29/tonne CO₂

TOTAL: <\$3/tonne CO₂

Limestone availability vs. CA coastal power plant locations

E.g., Moss Landing 2.5 GW power plant complex - largest single CO₂ emitted in state?

Safety of AWL effluent?

In-home tank CO₂ + carbonate reactors routinely used to add alkalinity to

saltwater aquariums!

RX-1 Calcium Reactor

The RX-1 represents the pinnacle in reactor technology available today. We've combined all the features an advanced reef hobbyist is looking for into a compact package that is easy to use and maintain. No more messing with finicky settings or inconsistent results, the RX-1 is a solid performer that will give you years of trouble-free service.

Specs

- 8.25" x 9" footprint
- 16" tall
- Giant media chamber
- Reverse flow
- Recirculating CO2
- pH probe holder
- Eheim 1250 pump
- JG fittings throughout
- Sch. 80 PVC and unions throughout
- Large union lid for quick and easy media addition
- SMC valve for precise effluent control

Features

The Eheim 1250 pump included with the RX-1 sets the standard for flow and efficiency. No other reactor in this class offers such a powerful and reliable pump. The Eheim carries a 2-year warranty.

By utilizing a box design, we're able to make the best use of space under an aquarium. The RX-1 is large enough to hold an entire container of Carib Sea ARM media (8 lbs.)!

Unlike competing products, you won't need a separate feed pump with the RX-1. The Eheim 1250 is powerful enough to serve double duty.

MSRP - \$429.00

View the User's Manual

Tank Rating: up to 400 gallons

Current EISG/CEC funded project

Bench-scale evaluation of AWL concept at UCSC's Long Marine Laboratory ————

Adaptation of commercial seawater calcium/alkalinity generator to test effectiveness and safety of wet carbonate scrubbing of a 10% CO₂ stream:

Project results thus far

 $\square > 95\%$ removal CO_2 stream depending on water/gas flow ratio:

Implications for Moss Landing Power plant:

Optimized, full-scale reactor using oncethrough cooling seawater (4x10⁶ tonnes seawater/day) might allow 25% CO₂ emissions reduction at <\$15/tonne CO₂.

Planned downstream bio testing of effluent water on selected marine invertebrates (with Prof. D. Potts, UCSC)

Air CO₂ capture with "Juiced" AWL (JAWL)

Add renewable DC electricity to AWL chemistry to allow:

- □ Production of air CO₂ absorbing solutions while generating "super green" hydrogen
 - ≥ 22 tonnes CO₂ absorbed per tonne H₂ produced
 - thus, novel production of carbon-negative hydrogen
- □Addition of alkalinity to seawater neutralizes or offsets ocean acidity

JAWL Requirements, Yields, Costs

(tonnes/tonne CO₂ consumed)

Estimated net cost = \$187 (cost) - \$87 (product value) = \$100/tonne CO₂ mitigațed

For Example: Ocean-based, carbon-negative wind hydrogen Atmos. CO2 Seawater offshore Seawater+Ca(HCO₃), Seawater+Ca(OH)₂ onshore +0, $H_2O +$ Limestone **electricity**

Summary:

- □ Direct mitigation of fossil energy CO₂ (e.g. sequestration) is essential for stabilizing atmospheric CO₂.
- □ In addition to climate effects, anthropogenic CO₂ impacts ocean chemistry.
- ☐ Ocean-based CO₂ mitigation must be considered:
 - Land-based efforts may prove inadequate.
 - >The ocean has a large CO₂ capture/storage potential.
 - Various potentially safe, marine-based options have been proposed and need to be evaluated.
- □ The preceding realities and possibilities need to be incorporated into CO₂ mitigation policy, decision-making, and R&D funding.